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Lie algebra projectors and the kinematics of collective 
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Department of Physics, McMaster University, Hamilton, Ontario, Canada L8S 4M1 

Received 24 January 1980, in final form 22 April 1980 

Abstract. Direct-sum decompositions of the Euclidean space of particle momenta into 
collective and intrinsic subspaces are achieved using projectors on so(3) and gl(3, R) algebra 
spaces. The separation of the N-particle kinetic energy into the corresponding collective 
and intrinsic comporients is then simply obtained. In the case of gl(3, R )  the resulting 
intrinsic kinetic enerliy is expressed in terms of an appropriate subset of the generators of 
the direct product group S O ( N )  x SO(N) .  A detailed comparison of these results with those 
of other authors is given. 

1. Introduction 

The Bohr-Mottelson nuclear collective model (Bohr 1952, Bohr and Mottelson 1953, 
Bohr et a1 1976) has been widely and successfully used to describe nuclear collective 
properties. To put this model on a microscopic foundation a number of authors have 
performed a transformation from the particle coordinates to a set of collective and 
intrinsic coordinates. The end product of such a transformation may be viewed as 
expressing the particle momenta in terms of a set of collective and intrinsic momenta 
taken to be the generators of some Lie groups Gcoll and G,,,, respectively?. To describe 
rotational motion Villars (Villars 1957, Villars and Cooper 1970), Gupta and Skinner 
(1968), Rowe (1970) and Herold (Herold and Ruder 1979, Herold 1979) chose 
Gcoll = SO(3). To include vibrational motion as well and obtain a microscopic analogue 
of the full Bohr-Mottelson collective model, Zickendraht (197 l ) ,  Dzyublik et a1 
(1972), Filippov (1974), Petrauskas and Sabalyauskas (1975), Ovcharenko (1976), 
Gulshani and Rowe (1976), Weaver eta1 (1976), Vanagas (1977), Gulshani (1978) and 
Buck et a1 (1979) chose Gcc,ll = GL(3, R), the general linear group in three real 
dimensions. 

Having chosen Gcoll = GL(3, R), one now faces the problem of finding an appro- 
priate set of intrinsic momenta consistent with the collective and the original momenta. 
Dzyublik e ta l ( l972)  and Ovcharenko (1976) have derived expressions for the intrinsic 
momenta and the intrinsic kinetic energy of the N-particle system in terms of a subset of 
the generators of the orthogonal group SO(N - 1) in some abstract N-dimensional 
space. In this paper we give a geometrically simple and clear derivation of the 
separation of the particle momenta and the total kinetic energy into collective and 
intrinsic components using projection operators on Lie algebra spaces. 

We follow, in this paper, the common designation of reserving capital letters for the group and lower case 
letters for the corresponding Lie algebra. 

0305-4470/81/010097 + 13$01.50 @ 1981 The Institute of Physics 97 
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In § 3 the projection operator on the so(3) vector space is defined and the 
corresponding collective rotational kinetic energy is derived in § 4. In 8 5 we study the 
group that is of interest to us in this paper, namely GL(3, R). The projection operator 
on the Lie algebra gl(3, R) is defined and used in 0 6 to project out the corresponding 
collective kinetic energy of an N-particle system. In § 7 the corresponding intrinsic 
kinetic energy component is then expressed in terms of a set of 3 N  intrinsic momenta 
which are generators of the group SO(N).  A discussion of why these intrinsic momenta 
are not all independent and hence not appropriate is given. Finally, in Q 8 we use 
Ovcharenko's (1976) approach to find an appropriate set of 3 N  - 9 intrinsic momenta 
as a subset of the generators of the direct product group S O ( N ) x S O ( N )  of an 
N-dimensional asymmetric top, in some abstract N-dimensional space. Comparison 
with the works of other authors is also given. 

2. Coordinate transformations and projectors 

Consider the 3N-dimensional Euclidean space R3N of the N-particle Cartesian coor- 
dinates xni ( n  = 1, . . . , N ;  i = 1 ,2 ,3 )  and the corresponding space P3N of the quantum- 
mechanical momenta pni = -iha/ax,,. The total kinetic energy of the N-particle system 
is 

where M is the mass of each particle. Consider next a transformation on R3N which 
decomposes P3N into a sum of collective Pcoll and intrinsic PIntr subspaces and write, for 
pn1 E P3N, pnr  = p:" +PE'' where p z t r  E P',,,, and PE'' E Pcoll. the transformation may be 
chosen so that PE" is a linear combination of the generators of s a n e  relevant Lie group 
Gcoll. Then Pc0ll coincides with the Lie algebra space of Gcoll. 

A most desirable situation arises when the above decomposition is a direct sum, i.e. 
P3N = PlntrOPcoll with P,,,, and Pcoll having no vectors in common and being mutually 
orthogonal. This is a generalisation of the concept of orthogonality of p',""' and PE'' and 
would result, in classical mechanics, in the vanishing of the terms XflLp:trpE1l in the 
transformed kinetic energy T. Such a decomposition is achieved very simply using the 
projection techniques (Pease 1965, Finkbeiner 1960). Specificially, one looks for a 
projection operator r which carries every element pnr of P3N into an element of the Lie 
algebra space of Gcoll. One then obtains a simply and explicitly =l?p,,  and 

In the derivations that follow below we ignore throughout the motion of the centre 
of mass. This, however, can be accounted for by minor changes in the definitions of the 
quantities that occur. 

lntr - 
P H Z  - (1 - mn1. 

3. Projector for Gcoll = SO(3) 

The three generators Li (i = 1 ,2 ,3 )  of SO(3) span a three-dimensional vector space 
so(3) over a field F. In R3NLi can be realised by the angular momentum differential 
operators 

(3.1) 
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where E k , ,  is the unit antisymmetric third-rank tensor. Now we define in R3N the 
Hermitian operator (summation over repeated indices is implied throughout) 

r(3) nr,nti- = - ~ z ( ! ~ J ~ ~ / z ~ ~ .  (3.2) 

where 

2:;) E Ekj jXnj  

and 4-' is the inverse of the rigid-body tensor defined by 

(3.3) 

41f =_ (Tr Q)&, - Qll 

QI, = Mxn,xn,. (3.5) 

(3.4) 

and Q,, is the mass quadrupole tensor defined by 

We claim that r(31 in (3.2) is a projector on so(3), i.e. carries every element p n ,  of P3N 

First observe that the space spanned by the three 3N-dimensional vectors ZLt) in 
into an element of so(3). The proof is as follows. 

(3.3) is invariant under r(3), i.e. 

r(!$,,z:,) = Yk)  nr 9 (3.6) 

Equation (3.6) is easily proved using equations (3.4), (3.5) and the identity E!&E!& =_ 

&8,k - &&. Now it is easy to show that 

(3.8) r(3,)* .= r(3.1 r(31- 
ni,mj n 1 . G ~  &k ,mj=  rL:.lmi, 

i.e. r(3) has rank three and is idempotent. We define the projection in P3N by 

Then for an arbitrary vector la, = akLk = ( I k E k i j X n i P n j  E so(3) with ak E F we have, from 
equations (3.9) and (3.6), 

(3.10) 

= akekjixmjpmi = la,. 

Equation (3.10) shows that so(3) is invariant under r(3). For a vector U orthogonal to I,,, 
i.e. U .  la, = 0, its projection is also orthogonal to I,,, i.e. 

( 3 )  r ( U ) .  la, = U.r(3)(1,k) 
-u.l,,=O. - (3.11) 

From equations (3.7), (3.8), (3.10) and (3.11) it follows (Pease 1965, Finkbeiner 1960) 
that rc3) is indeed a projector of P3N on so(3). 
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4. Kinetic energy for rotation 

Since the operator r(3’ in equation (3.2) projects every element pnl  of the Cartesian 
momentum space P3N on the Lie algebra space of S0(3) ,  we readily obtain the 
decomposition 

pnr  = PEtr + p:‘ 

z (amn6i, - E,),,)P~, + r%,Pm, (4.1) 

for the rotational motion. The importance of the apparently trivial identity in (4.1) lies 
in the expression for pEt, which can easily be expressed as 

p ; t  r(3) ni,m/Pm/ - M ( x n  x (9-l * ~ ) ) i  (4.2) 

where the definition of rC3) in equation (3.2) has been used and L is the angular 
momentum vector. Equation (4.2) is merely the ‘rigid’-body rotation expression for the 
collective components of the individual particle momenta. 

In classical mechanics pEtr and pEt in equation (4.1) are, by construction, ortho- 
gonal in the sense that En,pn l  p n i  = 0. This is not so in quantum mechanics because pill 

are differential operators on R3N and hence do not commute with r(3). Nevertheless, in 
the corresponding decomposition of the kinetic energy T, obtained from equation (4. 1), 
these cross terms can readily be seen to vanish trivially. One therefore obtains the clean 
decomposition 

intr col1 

Now it is simple to show that 

(4.4) 

which is the ‘rigid’-body rotation kinetic energy. The properties of r(3), p:!r and T,,, in 
equations (3.2), (4.1) and (4.3) will be examined in detail in a forthcoming publication. 
Our main concern here is, however, the kinematic group GL(3, R) to which we now‘ 
turn. 

5. Projector for Gcoll = GL(3, R) 

The nine generators tl,(i, j = 1 , 2 ,  3) of the group GL(3, R) span a nine-dimensional 
vector space gl(3, R) over a field F. An arbitrary element of gl(3, R) acting on R3N is 
realised by 

3 3 N 

I . ,  = 1 1,/=1 n = l  
la,, 1 al,tl, 1 a,, 1 XncPnl (5.1) 

with aij E F. Let us define the Hermitian operator 

rL:,)mj= M S ~ ~ X , ~ Q ; : X , ,  
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where Q-' is the inverse of the quadrupole tensor (3.5) and the summation over 
repeated indices in (5.2) and throughout is implied. We claim that r$lmj in (5.2) is a 
projector on gl(3, R) of the elements pnr  of P3N. The proof is as follows. 

From equations (5.2) and (3.5) we have 

(5.3) 

(5.4) 

(5.7) 
where equations (5.5) and (5.6) have been used. For any vector U orthogonal to t,+ i.e. 
U .  t,,, = 0, its projection r ( 9 ) ~  is also orthogonal to r,,,, i.e. 

r ( 9 ) (~ ) .  = U .  r(9)(t,,l) 
- - U . t , t l = o *  ( 5 . 8 )  

Equations (5.3), (5.4), (5.7) and (5.8) show that r ~ ~ ~ m ,  in (5 .2)  is, indeed, a projector on 
the vector space gl(3, R). 

The Kronecker delta S,,  in (5.2) plays no role in what follows and we choose to omit 
it and redefine the gl(3, R) projector (5.2) as 

rflnl = M x n i Q ,  Xmi. (5.9) 1 

Equation (5.5) then reduces to 

rnmXml = xnc* (5.10) 

6. Kinetic energy for rdation and vibration 

Since r,, in (5.9) projects the Cartesian momentum space P3N on the space spanned by 
the Lie algebra of GL(3, R), one readily obtains, for the rotation-vibrational motion 
described by GL(3, R), the decomposition 

pnr  = p i t r  + p:I1 
(Smn - r ,m)pm,  + rnmpmr. (6.1) 

In classical mechanics p i t r  and p:" are, by construction, orthogonal in the sense that 
X f l r p n l  p n r  = O .  This is not the case in quantum mechanics as pnl  and rnm do not mtr col1 



102 P Gulshani 

commute, Nevertheless, in the total kinetic energy T these cross terms vanish as a 
simple consequence of the definition (6.1) and one readily obtains the clean decom- 
position 

T n t r  + Tco11 (6.2a) 

where 

and 

( 6 . 2 ~ )  

Clearly p:l1 and Tcoll in (6.1) and ( 6 . 2 ~ )  are projected components in GL(3, R) Lie 

1 
T = - Pni rnmPmi.  

- 2 M  

algebra space since, from equation (5.9), one can write 

p:l1 = rnmpmi = M X n j Q s l t k l  

and 
(6.3) 

1 
T =-Pnir nm m r  . = -  1 Tr (i. Q-' ,  t -if"-'. t )  

- 2 M  

where tii are the nine generators of GL(3, R) defined in equation ( 1) an1 

(6.4) 

t . .  G t . .  

Except for the effect of the omission of the centre-of-mass motion, expressions (6.3) 
and (6.4) are identical to those derived previously by the author (Gulshani and Rowe 
1976, Gulshani 1977, 1978; see also Vanagas 1977) using coordinate transformation. 
In these works expression (6.4) has been studied in detail in connection with the 
spectrum generating algebras R60so(3)  {Qij, Lk}, gl(3, R), cm(3) = {Qij, t i j }  and the 
Heisenberg algebra { Q ,  Plk, I ;  [aij, Plk] = ihSilSjk}. In particular, we see that Tcoll in 
(6.4) is a rational function of the algebra cm(3). This becomes obvious when the identity 

11 11' 

Q:' =--- I [(Tr Q)'-Tr Q2 - 2(Tr Q)Q + Q ' ] i j ,  
" 2 det Q 

where det Q is the determinant of Q, is used. 

quadrupole principal axis defined by the orthogonal transformation 
The physical meaning of Tcoll becomes more apparent by transforming it to the 

RAiQijRej E SABIA (A,  B = 1 ,2 ,3 )  (6.5) 

where R E SO(3) and IA are the three principal quadrupole moments defined by 

In equation (6.6) xnA are the principal-axis components of xni defined by 

x,,A RAixni. (6.7) 

Tcoll in equation (6.4) can then be written as (Gulshani and Rowe 1976) 

Tcoll T v i b  + Trot (6.8a) 
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where 

(6.8b) 

The operators appearing in (6.86, c )  are defined in terms of the principal-axis 
components 

of tij in (5.1) as follows (Gulshani and Rowe 1976): 

LAB = fAB - tBA 

1 - iha/aIA = TtAA 

2 A B  = (IB/IA)1/2tAB -(IA/IB)1’2tBA. 

(6.10) 

(6.11) 

(6.12) 

Equations (6.10)-(6.12) define respectively the principal-axis components of the 
angular momentum, dilation momenta and ‘vortex’ angular momentum. In deriving 
(6.8 b, c) from equation (6.4) we have used the fact that [LAB, 2cD] = [LAB, I C ]  = 
[ Z A B ,  I C ]  = 0 .  A detailed study of the expressions in equations (6.86, c )  is given by the 
author (Gulshani and Rowe 1976, Gulshani 1978). 

7. The intrinsic kinetic energy 

The decomposition of the particle momentum space P3N into collective and intrinsic 
subspaces will be completed once we have found a set of 3N-9 linearly independent 
intrinsic momenta in terms of which p:tr can be expressed. A candidate for such a set 
appears to be a subset of the generators of the orthogonal group SO(N) (Morinigo 
1972, Dzyublik et a1 1972, Ovcharenko 1976). These generators may be realised on 
R3N by the &(N - 1) operators, the so called particle-index angular momentum 
(Morinigo 1972): 

(7.1) J = x  .p . - x  .p nm ni mi mi ni*  

Now using the identities 
1 

Pmi = MQik XnkXnlpml 

and 

(6nm - r , L m ) x m i  = 0 

which follow respectively from equations (3.5) and (5.10), we obtain for the intrinsic 
components of the particle momenta, defined in (6. l ) ,  the expression 

p:t‘ = JzQ;1/2jnk (7.2) 
where the 3 N  quantities .ink are defined by 

j n k  (anm - - rnm)&kJ , im 

Rni = Jh’lxnkQi!i2.  
and 

(7.3) 

(7.4) 
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We now use the commutation relation 

and, hence, 

to write 

= $&iQ,i'Jnj. (7.7) 

Transforming (7.7) to the quadrupole principal axis given in equation (6.5) and using 
the relations 

(7.8) [Jnm, IA1 = [Jnm,  RAil = 0, 

one readily obtains the expression 

1 -2 
N 3  

T , n t r = 3  E 1 
n = l  A = I  IA 

(7.9) 

where 

7,A (7.10) 

By means of a simple manipulation one can also express the three generators TAB, in 
equations (6.12), of GL(3, R) in terms of the operators J,, of SO(N)  as follows: 

TAB = R n A E m B J n m  (7.11) 

where 

E n A  = RAiE,i = (hf/IA)1'2x,A. (7.12) 

An expression for T,,,, similar to that in equations (7.9) has been given by Rowe and 
Rosensteel (1979 a, b). But these two expressions are, in fact, quite different in detail. 
Whereas T,,,, in (7.9) involves 3 N  intrinsic momenta JnAi, that given by Rowe and 
Rosensteel (1979a, b) involves 3N-9 intrinsic momenta. Their set of 3N-9 intrinsic 
momenta are defined differently from that of j n A  in equations (7.3) and (7.10). In fact, 
we show in appendix 2 that the set of 3N-9 intrinsic momenta given by these authors 
does not have well defined action in the configuration space R3N and have complicated 
transformation properties. Furthermore, we show that the expression for Ti,,, given by 
Rowe and Rosensteel(1979a, b) though having formal validity in classical mechanics, is 
in fact not valid in a quantum setting. 

It is recognised (Gulshani 1977, Buck eta1 1979) that the difficulties associated with 
defining a set of intrinsic momenta with well defined action in R3N is closely related to 
the fact (Gulshani 1977) that the corresponding intrinsic coordinates do not exist. It is, 
however, possible to find an appropriate set of 3N-9 independent intrinsic momenta in 
some abstract N-dimensional space, as has been shown in a similar context by 
Ovcharenko (1976). This resolution of the problem uses the fact (Ovcharenko 1976) 

f. We note that J,A are termed 'intrinsic' correctly because they commute with the collective variables la, RA,  
and Qii as well as withd/aZA in equations (6 .5 ) ,  (6.6) and (6.11) (cf equation (7 .6)) .  In asimilar manner TAB in 
(7.11) are to be considered intrinsic. 
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that the generators of the group SO(N)  and those of the direct product group 
SO(N)  x SO(N),  i.e. the group associated with an N-dimensional asymmetric top 
(Gulshani 1979), become identical when acting in the factor space SO(N)/SO(N - 3). 
In the following section we show that Ti,,, can be expressed in terms of a subset of the 
generators of SO(N)  x SO(N)  when the action of T,,,, is restricted to the space of 
functions defined on the factor space SO(N)/SO(N - 3). 

8. Appropriate set of intrinsic momenta 

Let us first point out a few important properties of the projector r,, in equation (5.9). 
From equations (7.12), (7,1), (6 .5) ,  (5.10) and (5.9) it readily follows that 

[Jnm,  RAAI = - i h ( L i R , A  - 6 6 n R m A ) .  (8.4) 

Since the N x N matrix r,, is idempotent, i.e. r2 = r, and has rank three (=Tr r), three 
of its eigenvalues are unity and the remaining N - 3 are zero. It then follows from 
equations (8,1)-(8.3) that the quantities RnA are three ( A  = 1, 2 ,3)  normalised eigen- 
vectors of r,, with eigenvalues unity. The remaining ( N  - 3) normalised eigenvectors 
R,,,(a = 4, 5 ,  . . . , N )  of r,, with eigenvalues zero and orthogonal to R,A can then be 
defined by 

- -  rn,&, = o R n a R n p  = Sa0 R n a R n A  = 0 (a ,  p = 4 , .  . . , N ) .  ( 8 . 5 )  

The N eigenvectors {EnA, Rna ; A = 1 ,2 ,3 , ;  a = 4 . . . N }  may now be regarded as the N 
columns of N x N orthogonal matrix I?,,(cr = 1,2 ,  . . . , N )  which, of course, diagonal- 
ise the N x N matrix Trim. Thus the subscripts {a} = {A,  a }  label the N principal axes of 
T f .  These axes are connected to the N axes labelled by n by the orthogonal matrix E,, 
in this abstract N-dimensional space, the so called particle-index space (Morinigo 1972, 
Dzyublik et a1 1972, Buck et a1 1979). 

The above interpretation allows us to define quantities projected along the three 
principal axes of r labelled by A,  thereby simplifying slightly the expression for T,,,, in 
equation (7.9). Thus using equation (8.3), we rewrite j , ,A  in (7.10) (cf equation (7.3)) in 
the form 

JnA = Jan - RnBJAB (8.6) 

JA, RmAJmn T A B  = J A B  = R,Al?,BJ,,, (8.7) 

where we have the definitions 

and where for consistency of notation we have redefined L?AB in (7.11) as JAB.  

Equations (8.6) and (8.4) then allow us to rewrite Ti,,, in (7.9) as 

t From the definition of RnA in equation (7.12) we see that if we interpret x n A  as three vectors x ( ~ )  in N 
dimensions, then three of these principal axes (those labelled by A )  coincide with the orthonormal vectors 
(1 / J I A ) X ' A ' .  



106 P Gulshani 

We note that expression (8.8) involves projections JA, and JAB of Jnm along 
different axes (cf the two sets of axes labelled by n and B). However, the number of 
components of J,,, appearing in (8.8) cannot be reduced to 3N-9 by using the relation 
JAn = R,,JA, where JAu are r-principal-axes components of J,,. The reason for this is 
that the N - 3 columns I?,,, of the N x N orthogonal matrix defined in equations 
(8.5) do not transform under the action of J,, as columns of an orthogonal matrix, i.e. 
[J,,, RA,] # -ih(8,;Rna - 8,$,,). This is in contrast to the transformation properties 
of the first three columns, RnA (cf equation (8.4)). The above assertion is proved in 
appendix 1. This fact was inadvertently overlooked by Rowe and Rosensteel(1979a, b) 
in deriving their expression for T,,,,. Consequently their result for T,,,, is incorrect, as is 
shown in appendix 2. 

The reason why I?,, do not transform under J,,, as elements of SO(N) is not too 
surprising: J,, in equation (7.1) are the angular momentum operators, in N-dimen- 
sional particle-index space, of the N-point particles whereas the orthogonal matrix R,, 
gives the orientation of the matrix r,,, an ‘extended’ object which may be likened to an 
N-dimensional asymmetric top. Now, as is well known and as emphasised by Fillipov 
(1974), there is a difference, even in the three-dimensional space, between the angular 
momentum operators appropriate for an extended object and those of point particles 
(see, for example, Gulshani (1979) for the three-dimensional situation). The angular 
momentum algebra appropriate for an N-dimensional extended object such as r,, is 
that of the direct product group SO(N)  x SO(N)  (see, for example, Judd 1975, Gulshani 
1979). The corresponding infinitesimal operators of this group are denoted here by the 
direct sum so(N) +so(N) ={K,,, K,a; a, m = 1, . . , , N ;  u, G = 1, , , . , N }  where the 
right-shift operators K,, are chosen to be the &(N-1) angular momentum 
components along the axes labelled by n and the left-shift operators KUa are those along 
the principal axes of r, i.e. K,,, = R,,R,,K,,t. 

It is well known that 

[ ~ n m ,  R;uI= -ih(SmARnu - 8 n ; R m u )  for all u (8.9) 

(cf [J,,, # --ih(8,;R,,, - 8,;Rma)) and one can express Knm and Kua in terms of 
iN* ( N  - 1) Euler angles (Ovcharenko 1976). Similarly, one can express J,, in terms of 
a subset of these Euler angles. It is also clear that under rotation in this space J,, 
transforms as an antisymmetric tensor, i.e. 

[K,,, J;k ]=  -ih(8,,iJ,,~ + S,AJ;,, - S,;Jmk -8,,Jim). (8.10) 

Furthermore, the operators K,, become identical to J,,, when they act on functions 
W defined on the factor space SO(N)/SO(N - 3) (Ovcharenko 1976), i.e. 

K,,, W r )  = J r I m W r )  r E SO(N) /SO(N - 3) (8.11) 

(cf the three-dimensional case). 
Equations (8.11) and (8.9) now allow us to express T,,, in (8.8) in terms of only 

(3N-9) of the operators K,, (and not J,,,)t as follows. Restricting the action of T,,,, in 
equation (8.8) to the space of functions W(r) defined on the factor space SO(N) /SO(N-  

t It is observed that K,,, and Km6 are not defined in the n-particle phase-space in contrast to J,, in equation 
(7.1). This is because equations (8.5) do not completely determine E,, in R 3 N .  A detailed study of the 
distinction between left and right operators is given by Vanagas (1977). 
f This is the case in spite of (8.11) because [J,,,, a:,] can never be equal to -ih(S,,R,, - S,$,,). 
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3), i.e. r E SO(N)/SO(N-3), and using equations (8.9), (8.10) and (8.11), one readily 
obtains the expression 

(8.12) 

with r E SO(N)/SO(N-3), KAc, = EnARmaKnm and KAB RnAEmBKnm. It is observed 
that only 3N-9 operators KAa appear in equation (8.12). These are the appropriate 
intrinsic momenta we have been seeking, but it must be emphasised that they are 
appropriate only in the space V(r).  Combining equations (8.12) and (6.8) (cf (6.2)), we 
finally obtain, for the transformed N-particle kinetic energy, the expression 

where we have also replaced T A B  by K A B  (cf equations (6.8c), (7.11) and (8.7)). 
Equation (8.14) is seen to be identical to that given by Dzyublik et a1 (1972), Fillipov 
(1974), Ovcharenko (1976) and Vanagas (1977). 

An appropriate irreducible basis set for solving the Schrodinger equation with the 
kinetic energy (8.14) has been studied in great detail by many authors (Vanagas and 
Kalinauskas 1974, Fillipov 1974, Petrauskas and Sabalyauskas 1975, Asherova et a1 
1976, Vanagus 1976) and we will not discuss these in this paper. However, the goal of 
such studies is to put the phenomenological collective model of Bohr (Bohr 1952, Bohr 
and Mottelson 1953) on a microscopic basis by finding an appropriate decomposition of 
the N-particle Hilbert space into collective and intrinsic parts with small coupling 
between them. In equation (8.14) we see that such a coupling is mediated by KAB. 

However, there is also a dynamical type of coupling arising from the particle inter- 
actions which has not been discussed in his paper. How to deal with these questions is 
still not completely resolved. In a forthcoming publication we will consider some 
questions related to the effects of the collective motions described in equation (8.14) on 
the intrinsic structure. 
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Appendix 1 

Here we show that the N-3 columns E,, ( a  = 4 , .  . . , N) of the N x N orthogonal 
matrix (a  = 1, . . . , N) defined in equations (8.5) do not transform under J,,, as the 
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first three columns R n A  ( A  = 1,2 ,3) ,  i.e. as in equation (8.4). The proof is as follows. 
Suppose Rna did transform according to 

[Jnm, R;al= -ih(&;Rna -an$,,). ( A l . l )  

Then multiplying (Al.1) from the left by RnP and I?,.,, summing over n and m and using 
the orthogonality relation Rn,I?np = limp in ( 8 . 5 ) ,  we obtain 

(A1.2) 

where the left-shift operators Jp., = RnpRm,Jnm. But from the definition of I?nA in (7.12) 
and the orthogonality relation RnAR,, = 0 in (8.5) we have 

RnaXnA = 0 for all a and A (A1.3) 

- - - 

[Jp.,, RA, I= - ih(&pR,., - &&p) 

and consequently 
- -  

Jp., E RnpRm,Jnm 0 (A1.4) 

(cf equation (7.1))T. Equations (Al .4)  and (A1.2) then imply that I?,,, = 0 for all n and 
a. But this is not possible (cf equations (8.5)). We must, therefore, conclude that 
equation (A1.2) is false. 

Appendix 2 

Rowe and Rosensteel(1979a, b) define the 3N-9 intrinsic momenta 9aA = l?na&,AJn,n 
and derive the expression 

for the intrinsic kinetic energy based on the assumption that the quantity 

~3 a 
Z a A  1 ~ (RmaRnAxn , )  

m = ~  j = 1  axmj 
n - 1  

vanishes (see Rowe and Rosensteel 1979a, equations (26) and (29)). We note first that 
the momenta are not defined in 
R3N,  as has been pointed out earlier. Secondly, one can show that Z a A  cannot vanish so 
that the expression for Ti::’ is not correct. The non-vanishing of ZmA can be seen as 
follows. Since I?,,I?,A = R,,x,, = 0 (cf equation (A1.3)), one can rewrite ZmA as 

are not well defined in the phase-space because 

ZE EnAJnm (Ems ) (A2.1) 

where equation (8.4) has been used. Now the RHS of equation (A1.5) would vanish if 
equation (Al .1)  were valid. In fact, Rowe and Rosensteel (1979b) assumed equation 
(Al . l )  to be valid and used it to show that ZmA vanishes, thereby deriving their result for 

. We know now that equation ( A l . l )  is not valid. Moreover, one can easily and 
explicitly show that in the special case of three dimensions the RHS of equation (A2.1) 

f Note that (Al .4)  is merely a generalisation of the situation in three dimensions where the component of the 
angular momentum along the particle radius vector vanishes. 

T‘RR) 
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does not vanish. In this special case J,,, becomes identical to the three components of 
the physical angular momentum of the particles which are expressible in terms of the 
polar angles. Rfla and E,, are likewise identifiable with the first and the remaining two 
columns of the 3 x 3 rotation matrix expressible in terms of the usual Euler angles (Rose 
1957). 
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